o
    hF                     @   sx   d dl mZmZ d dlmZ G dd dZG dd deZG dd deZG d	d
 d
eZdd Z	dddZ
dd ZdS )    )array_namespacexp_size)cached_propertyc                   @   s$   e Zd ZdZdddZdddZdS )	Rulea	  
    Base class for numerical integration algorithms (cubatures).

    Finds an estimate for the integral of ``f`` over the region described by two arrays
    ``a`` and ``b`` via `estimate`, and find an estimate for the error of this
    approximation via `estimate_error`.

    If a subclass does not implement its own `estimate_error`, then it will use a
    default error estimate based on the difference between the estimate over the whole
    region and the sum of estimates over that region divided into ``2^ndim`` subregions.

    See Also
    --------
    FixedRule

    Examples
    --------
    In the following, a custom rule is created which uses 3D Genz-Malik cubature for
    the estimate of the integral, and the difference between this estimate and a less
    accurate estimate using 5-node Gauss-Legendre quadrature as an estimate for the
    error.

    >>> import numpy as np
    >>> from scipy.integrate import cubature
    >>> from scipy.integrate._rules import (
    ...     Rule, ProductNestedFixed, GenzMalikCubature, GaussLegendreQuadrature
    ... )
    >>> def f(x, r, alphas):
    ...     # f(x) = cos(2*pi*r + alpha @ x)
    ...     # Need to allow r and alphas to be arbitrary shape
    ...     npoints, ndim = x.shape[0], x.shape[-1]
    ...     alphas_reshaped = alphas[np.newaxis, :]
    ...     x_reshaped = x.reshape(npoints, *([1]*(len(alphas.shape) - 1)), ndim)
    ...     return np.cos(2*np.pi*r + np.sum(alphas_reshaped * x_reshaped, axis=-1))
    >>> genz = GenzMalikCubature(ndim=3)
    >>> gauss = GaussKronrodQuadrature(npoints=21)
    >>> # Gauss-Kronrod is 1D, so we find the 3D product rule:
    >>> gauss_3d = ProductNestedFixed([gauss, gauss, gauss])
    >>> class CustomRule(Rule):
    ...     def estimate(self, f, a, b, args=()):
    ...         return genz.estimate(f, a, b, args)
    ...     def estimate_error(self, f, a, b, args=()):
    ...         return np.abs(
    ...             genz.estimate(f, a, b, args)
    ...             - gauss_3d.estimate(f, a, b, args)
    ...         )
    >>> rng = np.random.default_rng()
    >>> res = cubature(
    ...     f=f,
    ...     a=np.array([0, 0, 0]),
    ...     b=np.array([1, 1, 1]),
    ...     rule=CustomRule(),
    ...     args=(rng.random((2,)), rng.random((3, 2, 3)))
    ... )
    >>> res.estimate
     array([[-0.95179502,  0.12444608],
            [-0.96247411,  0.60866385],
            [-0.97360014,  0.25515587]])
     c                 C      t )a  
        Calculate estimate of integral of `f` in rectangular region described by
        corners `a` and ``b``.

        Parameters
        ----------
        f : callable
            Function to integrate. `f` must have the signature::
                f(x : ndarray, \*args) -> ndarray

            `f` should accept arrays ``x`` of shape::
                (npoints, ndim)

            and output arrays of shape::
                (npoints, output_dim_1, ..., output_dim_n)

            In this case, `estimate` will return arrays of shape::
                (output_dim_1, ..., output_dim_n)
        a, b : ndarray
            Lower and upper limits of integration as rank-1 arrays specifying the left
            and right endpoints of the intervals being integrated over. Infinite limits
            are currently not supported.
        args : tuple, optional
            Additional positional args passed to ``f``, if any.

        Returns
        -------
        est : ndarray
            Result of estimation. If `f` returns arrays of shape ``(npoints,
            output_dim_1, ..., output_dim_n)``, then `est` will be of shape
            ``(output_dim_1, ..., output_dim_n)``.
        NotImplementedError)selffabargsr   r   P/var/www/vscode/kcb/lib/python3.10/site-packages/scipy/integrate/_rules/_base.pyestimateC   s   !zRule.estimatec           	      C   sL   |  ||||}d}t||D ]\}}||  ||||7 }q| j|| S )a-  
        Estimate the error of the approximation for the integral of `f` in rectangular
        region described by corners `a` and `b`.

        If a subclass does not override this method, then a default error estimator is
        used. This estimates the error as ``|est - refined_est|`` where ``est`` is
        ``estimate(f, a, b)`` and ``refined_est`` is the sum of
        ``estimate(f, a_k, b_k)`` where ``a_k, b_k`` are the coordinates of each
        subregion of the region described by ``a`` and ``b``. In the 1D case, this
        is equivalent to comparing the integral over an entire interval ``[a, b]`` to
        the sum of the integrals over the left and right subintervals, ``[a, (a+b)/2]``
        and ``[(a+b)/2, b]``.

        Parameters
        ----------
        f : callable
            Function to estimate error for. `f` must have the signature::
                f(x : ndarray, \*args) -> ndarray

            `f` should accept arrays `x` of shape::
                (npoints, ndim)

            and output arrays of shape::
                (npoints, output_dim_1, ..., output_dim_n)

            In this case, `estimate` will return arrays of shape::
                (output_dim_1, ..., output_dim_n)
        a, b : ndarray
            Lower and upper limits of integration as rank-1 arrays specifying the left
            and right endpoints of the intervals being integrated over. Infinite limits
            are currently not supported.
        args : tuple, optional
            Additional positional args passed to `f`, if any.

        Returns
        -------
        err_est : ndarray
            Result of error estimation. If `f` returns arrays of shape
            ``(npoints, output_dim_1, ..., output_dim_n)``, then `est` will be
            of shape ``(output_dim_1, ..., output_dim_n)``.
        r   )r   _split_subregionxpabs)	r
   r   r   r   r   estrefined_esta_kb_kr   r   r   estimate_errorf   s
   +zRule.estimate_errorNr   )__name__
__module____qualname____doc__r   r   r   r   r   r   r      s    
<#r   c                   @   s.   e Zd ZdZdd Zedd Zd
ddZd	S )	FixedRulea  
    A rule implemented as the weighted sum of function evaluations at fixed nodes.

    Attributes
    ----------
    nodes_and_weights : (ndarray, ndarray)
        A tuple ``(nodes, weights)`` of nodes at which to evaluate ``f`` and the
        corresponding weights. ``nodes`` should be of shape ``(num_nodes,)`` for 1D
        cubature rules (quadratures) and more generally for N-D cubature rules, it
        should be of shape ``(num_nodes, ndim)``. ``weights`` should be of shape
        ``(num_nodes,)``. The nodes and weights should be for integrals over
        :math:`[-1, 1]^n`.

    See Also
    --------
    GaussLegendreQuadrature, GaussKronrodQuadrature, GenzMalikCubature

    Examples
    --------

    Implementing Simpson's 1/3 rule:

    >>> import numpy as np
    >>> from scipy.integrate._rules import FixedRule
    >>> class SimpsonsQuad(FixedRule):
    ...     @property
    ...     def nodes_and_weights(self):
    ...         nodes = np.array([-1, 0, 1])
    ...         weights = np.array([1/3, 4/3, 1/3])
    ...         return (nodes, weights)
    >>> rule = SimpsonsQuad()
    >>> rule.estimate(
    ...     f=lambda x: x**2,
    ...     a=np.array([0]),
    ...     b=np.array([1]),
    ... )
     [0.3333333]
    c                 C   s
   d | _ d S N)r   r
   r   r   r   __init__   s   
zFixedRule.__init__c                 C   r   r   r   r    r   r   r   nodes_and_weights   s   zFixedRule.nodes_and_weightsr   c                 C   s4   | j \}}| jdu rt|| _t||||||| jS )aM  
        Calculate estimate of integral of `f` in rectangular region described by
        corners `a` and `b` as ``sum(weights * f(nodes))``.

        Nodes and weights will automatically be adjusted from calculating integrals over
        :math:`[-1, 1]^n` to :math:`[a, b]^n`.

        Parameters
        ----------
        f : callable
            Function to integrate. `f` must have the signature::
                f(x : ndarray, \*args) -> ndarray

            `f` should accept arrays `x` of shape::
                (npoints, ndim)

            and output arrays of shape::
                (npoints, output_dim_1, ..., output_dim_n)

            In this case, `estimate` will return arrays of shape::
                (output_dim_1, ..., output_dim_n)
        a, b : ndarray
            Lower and upper limits of integration as rank-1 arrays specifying the left
            and right endpoints of the intervals being integrated over. Infinite limits
            are currently not supported.
        args : tuple, optional
            Additional positional args passed to `f`, if any.

        Returns
        -------
        est : ndarray
            Result of estimation. If `f` returns arrays of shape ``(npoints,
            output_dim_1, ..., output_dim_n)``, then `est` will be of shape
            ``(output_dim_1, ..., output_dim_n)``.
        N)r"   r   r   _apply_fixed_rule)r
   r   r   r   r   nodesweightsr   r   r   r      s   
$

zFixedRule.estimateNr   )r   r   r   r   r!   propertyr"   r   r   r   r   r   r      s    '
r   c                   @   s:   e Zd ZdZdd Zedd Zedd Zdd	d
ZdS )NestedFixedRulea  
    A cubature rule with error estimate given by the difference between two underlying
    fixed rules.

    If constructed as ``NestedFixedRule(higher, lower)``, this will use::

        estimate(f, a, b) := higher.estimate(f, a, b)
        estimate_error(f, a, b) := \|higher.estimate(f, a, b) - lower.estimate(f, a, b)|

    (where the absolute value is taken elementwise).

    Attributes
    ----------
    higher : Rule
        Higher accuracy rule.

    lower : Rule
        Lower accuracy rule.

    See Also
    --------
    GaussKronrodQuadrature

    Examples
    --------

    >>> from scipy.integrate import cubature
    >>> from scipy.integrate._rules import (
    ...     GaussLegendreQuadrature, NestedFixedRule, ProductNestedFixed
    ... )
    >>> higher = GaussLegendreQuadrature(10)
    >>> lower = GaussLegendreQuadrature(5)
    >>> rule = NestedFixedRule(
    ...     higher,
    ...     lower
    ... )
    >>> rule_2d = ProductNestedFixed([rule, rule])
    c                 C   s   || _ || _d | _d S r   )higherlowerr   )r
   r(   r)   r   r   r   r!     s   
zNestedFixedRule.__init__c                 C      | j d ur	| j jS tr   )r(   r"   r	   r    r   r   r   r"   "     
z!NestedFixedRule.nodes_and_weightsc                 C   r*   r   )r)   r"   r	   r    r   r   r   lower_nodes_and_weights)  r+   z'NestedFixedRule.lower_nodes_and_weightsr   c              
   C   sp   | j \}}| j\}}| jdu rt|| _| jj||gdd}	| jj|| gdd}
| jt||||	|
|| jS )a  
        Estimate the error of the approximation for the integral of `f` in rectangular
        region described by corners `a` and `b`.

        Parameters
        ----------
        f : callable
            Function to estimate error for. `f` must have the signature::
                f(x : ndarray, \*args) -> ndarray

            `f` should accept arrays `x` of shape::
                (npoints, ndim)

            and output arrays of shape::
                (npoints, output_dim_1, ..., output_dim_n)

            In this case, `estimate` will return arrays of shape::
                (output_dim_1, ..., output_dim_n)
        a, b : ndarray
            Lower and upper limits of integration as rank-1 arrays specifying the left
            and right endpoints of the intervals being integrated over. Infinite limits
            are currently not supported.
        args : tuple, optional
            Additional positional args passed to `f`, if any.

        Returns
        -------
        err_est : ndarray
            Result of error estimation. If `f` returns arrays of shape
            ``(npoints, output_dim_1, ..., output_dim_n)``, then `est` will be
            of shape ``(output_dim_1, ..., output_dim_n)``.
        Nr   axis)r"   r,   r   r   concatr   r#   )r
   r   r   r   r   r$   r%   lower_nodeslower_weightserror_nodeserror_weightsr   r   r   r   0  s   
"


zNestedFixedRule.estimate_errorNr   )	r   r   r   r   r!   r&   r"   r,   r   r   r   r   r   r'      s    '

r'   c                   @   s0   e Zd ZdZdd Zedd Zedd ZdS )	ProductNestedFixeda`  
    Find the n-dimensional cubature rule constructed from the Cartesian product of 1-D
    `NestedFixedRule` quadrature rules.

    Given a list of N 1-dimensional quadrature rules which support error estimation
    using NestedFixedRule, this will find the N-dimensional cubature rule obtained by
    taking the Cartesian product of their nodes, and estimating the error by taking the
    difference with a lower-accuracy N-dimensional cubature rule obtained using the
    ``.lower_nodes_and_weights`` rule in each of the base 1-dimensional rules.

    Parameters
    ----------
    base_rules : list of NestedFixedRule
        List of base 1-dimensional `NestedFixedRule` quadrature rules.

    Attributes
    ----------
    base_rules : list of NestedFixedRule
        List of base 1-dimensional `NestedFixedRule` qudarature rules.

    Examples
    --------

    Evaluate a 2D integral by taking the product of two 1D rules:

    >>> import numpy as np
    >>> from scipy.integrate import cubature
    >>> from scipy.integrate._rules import (
    ...  ProductNestedFixed, GaussKronrodQuadrature
    ... )
    >>> def f(x):
    ...     # f(x) = cos(x_1) + cos(x_2)
    ...     return np.sum(np.cos(x), axis=-1)
    >>> rule = ProductNestedFixed(
    ...     [GaussKronrodQuadrature(15), GaussKronrodQuadrature(15)]
    ... ) # Use 15-point Gauss-Kronrod, which implements NestedFixedRule
    >>> a, b = np.array([0, 0]), np.array([1, 1])
    >>> rule.estimate(f, a, b) # True value 2*sin(1), approximately 1.6829
     np.float64(1.682941969615793)
    >>> rule.estimate_error(f, a, b)
     np.float64(2.220446049250313e-16)
    c                 C   s,   |D ]}t |tstdq|| _d | _d S )Nz<base rules for product need to be instance ofNestedFixedRule)
isinstancer'   
ValueError
base_rulesr   )r
   r7   ruler   r   r   r!     s   

zProductNestedFixed.__init__c                 C   P   t dd | jD }| jd u rt|| _| jjt dd | jD dd}||fS )Nc                 S      g | ]}|j d  qS r   r"   .0r8   r   r   r   
<listcomp>      z8ProductNestedFixed.nodes_and_weights.<locals>.<listcomp>c                 S   r:      r<   r=   r   r   r   r?     r@   r-   _cartesian_productr7   r   r   prodr
   r$   r%   r   r   r   r"        

z$ProductNestedFixed.nodes_and_weightsc                 C   r9   )Nc                 S   r:   r;   r,   r>   cubaturer   r   r   r?     r@   z>ProductNestedFixed.lower_nodes_and_weights.<locals>.<listcomp>c                 S   r:   rA   rI   rJ   r   r   r   r?     r@   rC   r-   rD   rG   r   r   r   r,     rH   z*ProductNestedFixed.lower_nodes_and_weightsN)r   r   r   r   r!   r   r"   r,   r   r   r   r   r4   `  s    +	
r4   c                 C   s:   t |  }|j| ddi}||j|dddt| f}|S )NindexingijrC   r-   )r   meshgridreshapestacklen)arraysr   	arrays_ixresultr   r   r   rE     s   rE   Nc           	      #   s    t  du r  d  fddt jd D }fddtjd D }t|}t|}t|jd D ]}||df ||df fV  q?dS )a
  
    Given the coordinates of a region like a=[0, 0] and b=[1, 1], yield the coordinates
    of all subregions, which in this case would be::

        ([0, 0], [1/2, 1/2]),
        ([0, 1/2], [1/2, 1]),
        ([1/2, 0], [1, 1/2]),
        ([1/2, 1/2], [1, 1])
    N   c                    s"   g | ]}  | | gqS r   asarrayr>   i)r   split_atr   r   r   r?        " z$_split_subregion.<locals>.<listcomp>r   c                    s"   g | ]} |  | gqS r   rV   rX   )r   rZ   r   r   r   r?     r[   .)r   rangeshaperE   )	r   r   r   rZ   leftrighta_subb_subrY   r   )r   r   rZ   r   r   r     s   

  r   c                 C   s   |j }|||}|||}|jdkr|d d d f }|jd }t|}	t|}
||	ks1||
kr>td| d|	 d|
 || }|d |d  | }|j||dd|  }|| }| |g|R  }||dgdg|jd  R }|j|| d	|d
}|S )NrB   rC   z@rule and function are of incompatible dimension, nodes havendim z,, while limit of integration has ndima_ndim=z	, b_ndim=g      ?)dtyperU   r   )r.   rb   )	rb   astypendimr]   r   r6   rF   rO   sum)r   r   r   
orig_nodesorig_weightsr   r   result_dtype	rule_ndima_ndimb_ndimlengthsr$   weight_scale_factorr%   f_nodesweights_reshapedr   r   r   r   r#     s0   

 r#   r   )scipy._lib._array_apir   r   	functoolsr   r   r   r'   r4   rE   r   r#   r   r   r   r   <module>   s     [kZ
	