o
    	h`                     @   sD   d dl ZddlmZ ddlmZ dgZdddddddd	d
dZdS )    N   )_get_atol_rtol)make_systemtfqmrgh㈵>        F)rtolatolmaxiterMcallbackshowc          #      C   s  | j }	t|	tjrt}	| |	} t|j tjr||	}t| |||\} }}
}}tj|dkr<|	 }
||
dfS | j
d }|du rLtd|d }|du rU|	 }n|| |
 }|}|	 }|}|| |}|}d } }}t| |j}|}t|}|}|dkr||
dfS td|||\}}t|D ]}|d dk}|rt| |}|dkr||
df  S || }|||  }||| 8 }||d | | |  }tj|| }td	d
|d   } |||  9 }| d | }||}!|
||! 7 }
|dur
||
 |t|d
  |k r*|r"td|d
   ||
df  S |sVt| |}|| }"||"|  }|"| |"d |  }|| |}||7 }q|| |}|}|}q|rotd|d
   ||
|fS )aN  
    Use Transpose-Free Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse array, ndarray, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, `A` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        `scipy.sparse.linalg.LinearOperator`.
    b : {ndarray}
        Right hand side of the linear system. Has shape (N,) or (N,1).
    x0 : {ndarray}
        Starting guess for the solution.
    rtol, atol : float, optional
        Parameters for the convergence test. For convergence,
        ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied.
        The default is ``rtol=1e-5``, the default for ``atol`` is ``0.0``.
    maxiter : int, optional
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
        Default is ``min(10000, ndofs * 10)``, where ``ndofs = A.shape[0]``.
    M : {sparse array, ndarray, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function, optional
        User-supplied function to call after each iteration.  It is called
        as ``callback(xk)``, where ``xk`` is the current solution vector.
    show : bool, optional
        Specify ``show = True`` to show the convergence, ``show = False`` is
        to close the output of the convergence.
        Default is `False`.

    Returns
    -------
    x : ndarray
        The converged solution.
    info : int
        Provides convergence information:

            - 0  : successful exit
            - >0 : convergence to tolerance not achieved, number of iterations
            - <0 : illegal input or breakdown

    Notes
    -----
    The Transpose-Free QMR algorithm is derived from the CGS algorithm.
    However, unlike CGS, the convergence curves for the TFQMR method is
    smoothed by computing a quasi minimization of the residual norm. The
    implementation supports left preconditioner, and the "residual norm"
    to compute in convergence criterion is actually an upper bound on the
    actual residual norm ``||b - Axk||``.

    References
    ----------
    .. [1] R. W. Freund, A Transpose-Free Quasi-Minimal Residual Algorithm for
           Non-Hermitian Linear Systems, SIAM J. Sci. Comput., 14(2), 470-482,
           1993.
    .. [2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition,
           SIAM, Philadelphia, 2003.
    .. [3] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
           number 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia,
           1995.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_array
    >>> from scipy.sparse.linalg import tfqmr
    >>> A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = tfqmr(A, b, atol=0.0)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    r   r   Ni'  
   r      g      ?r   z:TFQMR: Linear solve converged due to reach TOL iterations z@TFQMR: Linear solve not converged due to reach MAXIT iterations )dtypenp
issubdtypeint64floatastyper   linalgnormcopyshapeminmatvecinner	conjugaterealsqrtr   rangeprint)#Abx0r   r   r	   r
   r   r   r   xpostprocessndofsruwrstarvuhatdthetaetarhorhoLastr0normtau_iterevenvtrstaralphauNextczbeta r>   U/var/www/vscode/kcb/lib/python3.10/site-packages/scipy/sparse/linalg/_isolve/tfqmr.pyr   	   s   T







)N)numpyr   	iterativer   utilsr   __all__r   r>   r>   r>   r?   <module>   s    
