o
    Vh                     @   sX  d dl mZ d dlmZ d dlmZmZmZ d dlm	Z	m
Z
 d dlmZ ddlmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZmZmZ d	dlmZmZmZ g dZ G dd de	j!Z"G dd de	j!Z#dede$de"fddZ%G dd deZ&e ede&j'fdej(fddddej(dd ee& d!e)dee$ d"ee d#ede"fd$d%Z*dS )&    )OrderedDict)partial)AnyDictOptional)nnTensor)
functional   )SemanticSegmentation)_log_api_usage_once   )register_modelWeightsWeightsEnum)_VOC_CATEGORIES)_ovewrite_value_paramhandle_legacy_interfaceIntermediateLayerGetter)mobilenet_v3_largeMobileNet_V3_Large_WeightsMobileNetV3)LRASPP!LRASPP_MobileNet_V3_Large_Weightslraspp_mobilenet_v3_largec                       sZ   e Zd ZdZ	ddejdededededd	f fd
dZdede	e
ef fddZ  ZS )r   a  
    Implements a Lite R-ASPP Network for semantic segmentation from
    `"Searching for MobileNetV3"
    <https://arxiv.org/abs/1905.02244>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "high" for the high level feature map and "low" for the low level feature map.
        low_channels (int): the number of channels of the low level features.
        high_channels (int): the number of channels of the high level features.
        num_classes (int, optional): number of output classes of the model (including the background).
        inter_channels (int, optional): the number of channels for intermediate computations.
       backbonelow_channelshigh_channelsnum_classesinter_channelsreturnNc                    s,   t    t|  || _t||||| _d S )N)super__init__r   r   
LRASPPHead
classifier)selfr   r   r   r   r    	__class__ Z/var/www/vscode/kcb/lib/python3.10/site-packages/torchvision/models/segmentation/lraspp.pyr#   #   s   
zLRASPP.__init__inputc                 C   sB   |  |}| |}tj||jdd  ddd}t }||d< |S )NbilinearFsizemodealign_cornersout)r   r%   Finterpolateshaper   )r&   r+   featuresr2   resultr)   r)   r*   forward+   s   

zLRASPP.forward)r   )__name__
__module____qualname____doc__r   Moduleintr#   r   r   strr8   __classcell__r)   r)   r'   r*   r      s"    "r   c                
       sL   e Zd Zdededededdf
 fddZd	eeef defd
dZ  Z	S )r$   r   r   r   r    r!   Nc              	      s   t    ttj||dddt|tjdd| _ttdtj||dddt	 | _
t||d| _t||d| _d S )N   F)biasT)inplace)r"   r#   r   
SequentialConv2dBatchNorm2dReLUcbrAdaptiveAvgPool2dSigmoidscalelow_classifierhigh_classifier)r&   r   r   r   r    r'   r)   r*   r#   7   s   

zLRASPPHead.__init__r+   c                 C   s\   |d }|d }|  |}| |}|| }tj||jdd  ddd}| || | S )Nlowhighr,   r-   Fr.   )rH   rK   r3   r4   r5   rL   rM   )r&   r+   rN   rO   xsr)   r)   r*   r8   F   s   

zLRASPPHead.forward)
r9   r:   r;   r>   r#   r   r?   r   r8   r@   r)   r)   r'   r*   r$   6   s    ""r$   r   r   r!   c                 C   sz   | j } dgdd t| D  t| d g }|d }|d }| | j}| | j}t| t|dt|did	} t| |||S )
Nr   c                 S   s    g | ]\}}t |d dr|qS )_is_cnF)getattr).0ibr)   r)   r*   
<listcomp>V   s     z'_lraspp_mobilenetv3.<locals>.<listcomp>rA   rN   rO   )return_layers)r6   	enumeratelenout_channelsr   r?   r   )r   r   stage_indiceslow_poshigh_posr   r   r)   r)   r*   _lraspp_mobilenetv3R   s   &

ra   c                   @   sB   e Zd Zedeedddeddddd	d
idddddZeZdS )r   zJhttps://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pthi  )resize_sizei"(1 )rA   rA   z]https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_largezCOCO-val2017-VOC-labelsg33333L@gV@)miou	pixel_accg㥛  @g{G(@z
                These weights were trained on a subset of COCO, using only the 20 categories that are present in the
                Pascal VOC dataset.
            )
num_params
categoriesmin_sizerecipe_metrics_ops
_file_size_docs)url
transformsmetaN)	r9   r:   r;   r   r   r   r   COCO_WITH_VOC_LABELS_V1DEFAULTr)   r)   r)   r*   r   `   s&    
r   
pretrainedpretrained_backbone)weightsweights_backboneNT)rt   progressr   ru   rt   rv   ru   kwargsc                 K   s   | ddr
tdt| } t|}| dur&d}td|t| jd }n|du r,d}t|dd	}t	||}| durE|
| j|dd
 |S )a|  Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
    `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.

    .. betastatus:: segmentation module

    Args:
        weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background).
        aux_loss (bool, optional): If True, it uses an auxiliary loss.
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
            weights for the backbone.
        **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
        :members:
    aux_lossFz&This model does not use auxiliary lossNr   rf      T)rt   dilated)rv   
check_hash)popNotImplementedErrorr   verifyr   r   r\   ro   r   ra   load_state_dictget_state_dict)rt   rv   r   ru   rw   r   modelr)   r)   r*   r   z   s   &


r   )+collectionsr   	functoolsr   typingr   r   r   torchr   r   torch.nnr	   r3   transforms._presetsr   utilsr   _apir   r   r   _metar   _utilsr   r   r   mobilenetv3r   r   r   __all__r=   r   r$   r>   ra   r   rp   IMAGENET1K_V1boolr   r)   r)   r)   r*   <module>   sL    #