o
    Vh.                     @   s  d dl mZmZmZmZmZ d dlZd dlZd dlZd dlm	Z	m
Z
 d dlmZ ddlmZ ddlmZ ejjd	e
d
ee
 de
fddZ			d2dededededef
ddZG dd dZdee
 de
fddZde
dee defdd Zejjd!ee
 d"eeeef  dededeee ef f
d#d$Zejjd%eee
f d&ee dee
 fd'd(Zejjd)ee
 dee
 d*ee d+ed,eee  d-ee de
fd.d/ZG d0d1 d1e	jZ dS )3    )DictListOptionalTupleUnionN)nnTensorbox_area   )_log_api_usage_once   )	roi_alignlevelsunmerged_resultsreturnc              	   C   s   |d }|j |j}}tj| d|d|d|df||d}tt|D ]4}t| |kd dddd}|	|d|| d|| d|| d}|
d||| }q)|S )Nr   r   r      dtypedevice)r   r   torchzerossizerangelenwhereviewexpandscatter)r   r   first_resultr   r   reslevelindex r$   K/var/www/vscode/kcb/lib/python3.10/site-packages/torchvision/ops/poolers.py_onnx_merge_levels   s   &r&         ư>k_mink_maxcanonical_scalecanonical_levelepsc                 C   s   t | ||||S N)LevelMapper)r*   r+   r,   r-   r.   r$   r$   r%   initLevelMapper%   s   r1   c                   @   sL   e Zd ZdZ			ddedededed	ef
d
dZdee defddZ	dS )r0   zDetermine which FPN level each RoI in a set of RoIs should map to based
    on the heuristic in the FPN paper.

    Args:
        k_min (int)
        k_max (int)
        canonical_scale (int)
        canonical_level (int)
        eps (float)
    r'   r(   r)   r*   r+   r,   r-   r.   c                 C   s"   || _ || _|| _|| _|| _d S r/   )r*   r+   s0lvl0r.   )selfr*   r+   r,   r-   r.   r$   r$   r%   __init__;   s
   
zLevelMapper.__init__boxlistsr   c                 C   sv   t t dd |D }t | jt || j  t j| j|j	d }t j
|| j| jd}|t j| j t jS )z<
        Args:
            boxlists (list[BoxList])
        c                 S   s   g | ]}t |qS r$   r	   ).0boxlistr$   r$   r%   
<listcomp>O   s    z(LevelMapper.__call__.<locals>.<listcomp>r   )minmax)r   sqrtcatfloorr3   log2r2   tensorr.   r   clampr*   r+   toint64)r4   r6   starget_lvlsr$   r$   r%   __call__I   s   .zLevelMapper.__call__Nr'   r(   r)   )
__name__
__module____qualname____doc__intfloatr5   r   r   rG   r$   r$   r$   r%   r0   /   s"    
r0   boxesc                    sT   t j| dd}|j|j t j fddt| D dd}t j||gdd}|S )Nr   )dimc              	      s6   g | ]\}}t j|d d d df |t j dqS )Nr   )r   layoutr   )r   	full_likestrided)r7   ibr   r   r$   r%   r9   [   s   6 z*_convert_to_roi_format.<locals>.<listcomp>r   )r   r>   r   r   	enumerate)rO   concat_boxesidsroisr$   rV   r%   _convert_to_roi_formatW   s   r[   featureoriginal_sizec                 C   sb   | j dd  }g }t||D ]\}}t|t| }dtt|   }|| q|d S )Nr   r   )shapeziprN   r   rA   r@   roundappend)r\   r]   r   possible_scaless1s2approx_scalescaler$   r$   r%   _infer_scaleb   s   rh   featuresimage_shapesc                    s   |st dd}d}|D ]}t|d |}t|d |}q||f  fdd| D }ttj|d tjd  }ttj|d tjd  }	tt|t|	||d}
||
fS )	Nzimages list should not be emptyr   r   c                    s   g | ]}t | qS r$   )rh   )r7   featoriginal_input_shaper$   r%   r9   z   s    z!_setup_scales.<locals>.<listcomp>r:   r   r,   r-   )	
ValueErrorr<   r   r@   rA   float32itemr1   rM   )ri   rj   r,   r-   max_xmax_yr_   scaleslvl_minlvl_max
map_levelsr$   rl   r%   _setup_scalesm   s$     rx   xfeatmap_namesc                 C   s,   g }|   D ]\}}||v r|| q|S r/   )itemsrb   )ry   rz   
x_filteredkvr$   r$   r%   _filter_input   s   
r   r|   output_sizesampling_ratiort   mapperc                 C   s"  |du s|du rt dt| }t|}|dkr%t| d |||d |dS ||}t|}	| d jd }
| d j| d j}}tj|	|
f| ||d}g }t	t
| |D ]1\}\}}t||kd }|| }t|||||d}t r}||| qT||j||< qTt rt||}|S )a  
    Args:
        x_filtered (List[Tensor]): List of input tensors.
        boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
            (x1, y1, x2, y2) format and in the image reference size, not the feature map
            reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
        output_size (Union[List[Tuple[int, int]], List[int]]): size of the output
        sampling_ratio (int): sampling ratio for ROIAlign
        scales (Optional[List[float]]): If None, scales will be automatically inferred. Default value is None.
        mapper (Optional[LevelMapper]): If none, mapper will be automatically inferred. Default value is None.
    Returns:
        result (Tensor)
    Nz$scales and mapper should not be Noner   r   )r   spatial_scaler   r   )ro   r   r[   r   r_   r   r   r   r   rW   r`   r   torchvision_is_tracingrb   rC   r&   )r|   rO   r   r   rt   r   
num_levelsrZ   r   num_roisnum_channelsr   r   resulttracing_resultsr"   per_level_featurerg   idx_in_levelrois_per_levelresult_idx_in_levelr$   r$   r%   _multiscale_roi_align   sT   
	
r   c                       s   e Zd ZdZeee  ee dZddddee	 de
eee ee f ded	ed
ef
 fddZdee	ef dee deeeef  defddZde	fddZ  ZS )MultiScaleRoIAligna{  
    Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.

    It infers the scale of the pooling via the heuristics specified in eq. 1
    of the `Feature Pyramid Network paper <https://arxiv.org/abs/1612.03144>`_.
    They keyword-only parameters ``canonical_scale`` and ``canonical_level``
    correspond respectively to ``224`` and ``k0=4`` in eq. 1, and
    have the following meaning: ``canonical_level`` is the target level of the pyramid from
    which to pool a region of interest with ``w x h = canonical_scale x canonical_scale``.

    Args:
        featmap_names (List[str]): the names of the feature maps that will be used
            for the pooling.
        output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region
        sampling_ratio (int): sampling ratio for ROIAlign
        canonical_scale (int, optional): canonical_scale for LevelMapper
        canonical_level (int, optional): canonical_level for LevelMapper

    Examples::

        >>> m = torchvision.ops.MultiScaleRoIAlign(['feat1', 'feat3'], 3, 2)
        >>> i = OrderedDict()
        >>> i['feat1'] = torch.rand(1, 5, 64, 64)
        >>> i['feat2'] = torch.rand(1, 5, 32, 32)  # this feature won't be used in the pooling
        >>> i['feat3'] = torch.rand(1, 5, 16, 16)
        >>> # create some random bounding boxes
        >>> boxes = torch.rand(6, 4) * 256; boxes[:, 2:] += boxes[:, :2]
        >>> # original image size, before computing the feature maps
        >>> image_sizes = [(512, 512)]
        >>> output = m(i, [boxes], image_sizes)
        >>> print(output.shape)
        >>> torch.Size([6, 5, 3, 3])

    )rt   rw   r'   r(   rn   rz   r   r   r,   r-   c                   sV   t    t|  t|tr||f}|| _|| _t|| _d | _	d | _
|| _|| _d S r/   )superr5   r   
isinstancerM   rz   r   tupler   rt   rw   r,   r-   )r4   rz   r   r   r,   r-   	__class__r$   r%   r5     s   
	


zMultiScaleRoIAlign.__init__ry   rO   rj   r   c                 C   sT   t || j}| jdu s| jdu rt||| j| j\| _| _t||| j| j	| j| jS )a  
        Args:
            x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have
                all the same number of channels, but they can have different sizes.
            boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
                (x1, y1, x2, y2) format and in the image reference size, not the feature map
                reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
            image_shapes (List[Tuple[height, width]]): the sizes of each image before they
                have been fed to a CNN to obtain feature maps. This allows us to infer the
                scale factor for each one of the levels to be pooled.
        Returns:
            result (Tensor)
        N)
r   rz   rt   rw   rx   r,   r-   r   r   r   )r4   ry   rO   rj   r|   r$   r$   r%   forward!  s   zMultiScaleRoIAlign.forwardc                 C   s&   | j j d| j d| j d| j dS )Nz(featmap_names=z, output_size=z, sampling_ratio=))r   rI   rz   r   r   )r4   r$   r$   r%   __repr__C  s   zMultiScaleRoIAlign.__repr__)rI   rJ   rK   rL   r   r   rN   r0   __annotations__strr   rM   r   r5   r   r   r   r   __classcell__r$   r$   r   r%   r      s4    #

"r   rH   )!typingr   r   r   r   r   r   torch.fxr   r   r   torchvision.ops.boxesr
   utilsr   r   jitunusedr&   rM   rN   r1   r0   r[   rh   fxwraprx   r   r   r   Moduler   r$   r$   r$   r%   <module>   st    

((
S