o
    Vh                     @  sP   d dl mZ d dlmZmZmZ d dlZd dlZddl	m
Z
 G dd de
ZdS )    )annotations)AnyOptionalUnionN   )TVTensorc                   @  s$   e Zd ZdZdddddddZdS )Maska  :class:`torch.Tensor` subclass for segmentation and detection masks with shape ``[..., H, W]``.

    Args:
        data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as
            well as PIL images.
        dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from
            ``data``.
        device (torch.device, optional): Desired device. If omitted and ``data`` is a
            :class:`torch.Tensor`, the device is taken from it. Otherwise, the mask is constructed on the CPU.
        requires_grad (bool, optional): Whether autograd should record operations. If omitted and
            ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``.
    Ndtypedevicerequires_graddatar   r
   Optional[torch.dtype]r   'Optional[Union[torch.device, str, int]]r   Optional[bool]returnc                C  s@   t |tjjrddlm} ||}| j||||d}|| S )Nr   )
functionalr	   )
isinstancePILImagetorchvision.transforms.v2r   pil_to_tensor
_to_tensoras_subclass)clsr   r
   r   r   Ftensor r   P/var/www/vscode/kcb/lib/python3.10/site-packages/torchvision/tv_tensors/_mask.py__new__   s
   

zMask.__new__)
r   r   r
   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__r   r   r   r   r   r      s    r   )
__future__r   typingr   r   r   	PIL.Imager   torch
_tv_tensorr   r   r   r   r   r   <module>   s    