# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

from copy import copy

from ultralytics.models.yolo.detect import DetectionTrainer
from ultralytics.nn.tasks import RTDETRDetectionModel
from ultralytics.utils import RANK, colorstr

from .val import RTDETRDataset, RTDETRValidator


class RTDETRTrainer(DetectionTrainer):
    """
    Trainer class for the RT-DETR model developed by Baidu for real-time object detection.

    This class extends the DetectionTrainer class for YOLO to adapt to the specific features and architecture of RT-DETR.
    The model leverages Vision Transformers and has capabilities like IoU-aware query selection and adaptable inference
    speed.

    Attributes:
        loss_names (Tuple[str]): Names of the loss components used for training.
        data (dict): Dataset configuration containing class count and other parameters.
        args (dict): Training arguments and hyperparameters.
        save_dir (Path): Directory to save training results.
        test_loader (DataLoader): DataLoader for validation/testing data.

    Notes:
        - F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
        - AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.

    Examples:
        >>> from ultralytics.models.rtdetr.train import RTDETRTrainer
        >>> args = dict(model="rtdetr-l.yaml", data="coco8.yaml", imgsz=640, epochs=3)
        >>> trainer = RTDETRTrainer(overrides=args)
        >>> trainer.train()
    """

    def get_model(self, cfg=None, weights=None, verbose=True):
        """
        Initialize and return an RT-DETR model for object detection tasks.

        Args:
            cfg (dict, optional): Model configuration.
            weights (str, optional): Path to pre-trained model weights.
            verbose (bool): Verbose logging if True.

        Returns:
            (RTDETRDetectionModel): Initialized model.
        """
        model = RTDETRDetectionModel(cfg, nc=self.data["nc"], ch=self.data["channels"], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)
        return model

    def build_dataset(self, img_path, mode="val", batch=None):
        """
        Build and return an RT-DETR dataset for training or validation.

        Args:
            img_path (str): Path to the folder containing images.
            mode (str): Dataset mode, either 'train' or 'val'.
            batch (int, optional): Batch size for rectangle training.

        Returns:
            (RTDETRDataset): Dataset object for the specific mode.
        """
        return RTDETRDataset(
            img_path=img_path,
            imgsz=self.args.imgsz,
            batch_size=batch,
            augment=mode == "train",
            hyp=self.args,
            rect=False,
            cache=self.args.cache or None,
            single_cls=self.args.single_cls or False,
            prefix=colorstr(f"{mode}: "),
            classes=self.args.classes,
            data=self.data,
            fraction=self.args.fraction if mode == "train" else 1.0,
        )

    def get_validator(self):
        """Returns a DetectionValidator suitable for RT-DETR model validation."""
        self.loss_names = "giou_loss", "cls_loss", "l1_loss"
        return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
