o
    Wh                     @   s4   d dl mZ d dlmZmZmZ G dd deZdS )    )DetectionPredictor)DEFAULT_CFGLOGGERopsc                       s4   e Zd ZdZeddf fdd	Z fddZ  ZS )PosePredictoraG  
    A class extending the DetectionPredictor class for prediction based on a pose model.

    This class specializes in pose estimation, handling keypoints detection alongside standard object detection
    capabilities inherited from DetectionPredictor.

    Attributes:
        args (namespace): Configuration arguments for the predictor.
        model (torch.nn.Module): The loaded YOLO pose model with keypoint detection capabilities.

    Methods:
        construct_result: Constructs the result object from the prediction, including keypoints.

    Examples:
        >>> from ultralytics.utils import ASSETS
        >>> from ultralytics.models.yolo.pose import PosePredictor
        >>> args = dict(model="yolo11n-pose.pt", source=ASSETS)
        >>> predictor = PosePredictor(overrides=args)
        >>> predictor.predict_cli()
    Nc                    sL   t  ||| d| j_t| jjtr"| jj dkr$t	d dS dS dS )aW  
        Initialize PosePredictor, a specialized predictor for pose estimation tasks.

        This initializer sets up a PosePredictor instance, configuring it for pose detection tasks and handling
        device-specific warnings for Apple MPS.

        Args:
            cfg (Any): Configuration for the predictor. Default is DEFAULT_CFG.
            overrides (dict, optional): Configuration overrides that take precedence over cfg.
            _callbacks (list, optional): List of callback functions to be invoked during prediction.

        Examples:
            >>> from ultralytics.utils import ASSETS
            >>> from ultralytics.models.yolo.pose import PosePredictor
            >>> args = dict(model="yolov8n-pose.pt", source=ASSETS)
            >>> predictor = PosePredictor(overrides=args)
            >>> predictor.predict_cli()
        posempsz}Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. See https://github.com/ultralytics/ultralytics/issues/4031.N)
super__init__argstask
isinstancedevicestrlowerr   warning)selfcfg	overrides
_callbacks	__class__ X/var/www/vscode/kcb/lib/python3.10/site-packages/ultralytics/models/yolo/pose/predict.pyr
      s   zPosePredictor.__init__c                    s   t  ||||}t|r"|ddddf jt|g| jjR  n	|ddddf }t|jdd ||j}|j	|d |S )a^  
        Construct the result object from the prediction, including keypoints.

        This method extends the parent class implementation by extracting keypoint data from predictions
        and adding them to the result object.

        Args:
            pred (torch.Tensor): The predicted bounding boxes, scores, and keypoints with shape (N, 6+K*D) where N is
                the number of detections, K is the number of keypoints, and D is the keypoint dimension.
            img (torch.Tensor): The processed input image tensor with shape (B, C, H, W).
            orig_img (np.ndarray): The original unprocessed image as a numpy array.
            img_path (str): The path to the original image file.

        Returns:
            (Results): The result object containing the original image, image path, class names, bounding boxes, and keypoints.
        N      )	keypoints)
r	   construct_resultlenviewmodel	kpt_shaper   scale_coordsshapeupdate)r   predimgorig_imgimg_pathresult	pred_kptsr   r   r   r   8   s
   FzPosePredictor.construct_result)__name__
__module____qualname____doc__r   r
   r   __classcell__r   r   r   r   r      s    r   N)&ultralytics.models.yolo.detect.predictr   ultralytics.utilsr   r   r   r   r   r   r   r   <module>   s   